APPENDIX A ## **EVIDENCE TABLE ON EFFICACY** | Efficacy | | | | | |--|---|---|-------|-----------------------| | Author | Reference | Study Design | Class | Clinical/Experimental | | Wood, Colloca,
Mathews ⁶ | JMPT 2001; 24:260–271. | Prospective,
randomized
comparative clin
trial RCT | 1 | Clinical | | Keller, Colloca ⁸ | JMPT 2000; 23(9):585–595. | Cohort Study | 1 | Clinical | | Yurkiw, Mior ²⁸ | Chiropractic Technique 1996; 8(4):155–162. | RCT (pilot study) | 1 | Clinical | | Gemmell, Jacobson ³¹ | son ³¹ JMPT 1995; 18(7):453–456. RCT | | 1 | Clinical | | Yates, Lamping,
Abram, Wright ⁵⁴ | JMPT 1988; 11(6):484–488. | RCT | 1 | Clinical | | Symons, Herzog,
Leonard, Nguyen ¹³ | JMPT 2000; 23(3):155–9. | Experimental Basic Science Investigation | 2 | Experimental | | Hawk, Azad,
Phongphua, Long ¹⁷ | JMPT 1999; 22:436–443. | Cohort | 2 | Clinical | | Herzog, Kawchuk,
Conway ⁴³ | JNMS 1993; 1:52–58. | Experimental | 2 | Experimental | | Polkinghorn,
Colloca ² | JMPT 2001; 24(9):589–595. | Case study | 3 | Clinical | | Polkinghorn BS,
Colloca CJ ¹⁵ | JMPT 1999; 22:411–416. | Case report | 3 | Clinical | | Polkinghorn,
Colloca ²¹ | JMPT1998; 21:187–96. | Case report | 3 | Clinical | | Cooperstein ²⁶ | Chiropractic Technique 1997; 9(3):108–114. | Review of the
Literature | 3 | | | Polkinghorn ³⁰ | JMPT 1995; 18:105–115. | Single case report | 3 | Clinical | | Polkinghorn ³² | Chiropractic Technique 1995; 7:98–102. | Case study | 3 | Clinical | | Polkinghorn ³³ | Chiro Sports Med 1995;
9:44–51. | Case study | 3 | Clinical | | Polkinghorn ³⁷ | JMPT 1994; 17(7):474–484. | Case Study | 3 | Clinical | | Osterbauer, De Boer,
Widmaier, Petermann,
Fuhr ³⁹ | JMPT 1993; 16:82–90. | Case Series | 3 | Clinical | |---|--|----------------------------|---|----------| | Osterbauer, Derickson,
Peles, DeBoer, Fuhr,
Winters ⁴⁴ | JMPT 1992; 15(8):501–511. | Descriptive Case
Series | 3 | Clinical | | Frach, Osterbauer,
Fuhr ⁴⁶ | JMPT 1992; 15:596–8. | Case study | 3 | Clinical | | Phillips ⁴⁷ | Chiropractic: The Journal of
Chiropractic Research and
Clinical Investigation 1992;
8(2):38–39. | Case study | 3 | Clinical | | Richards, Thompson,
Osterbauer, Fuhr ⁴⁹ | Americal Journal of
Chiropractic Medicine 1990;
3:25–32. | Case studies | 3 | Clinical | | Author | Number | Ages | Intervention | Results | |---|--------------------------|-----------------|--|--| | Wood,
Colloca,
Mathews ⁶ | 30 (11 men,
19 women) | 23–59 years old | Manual versus
mechanical adjusting
techniques | Equal effectiveness between the manual and mechanical adjusting groups during the treatment period and at one month follow up. Cervical ROM showed statistically significant changes for both groups during the treatment phase, but the differences between groups was not statistically significant at the end of treatment or one month follow up | | Keller,
Colloca ⁸ | 40 | Na | AII (max setting) vs
sham (AII min setting)
vs 20 min rest | 70% of SMT increased myoelectric output by > 10% (approx range, -10% to 65%); 20% of sham increased yoelectric output by > 10% (approx range, -10% to 25%); 20% of control ncreased yoelectric output by > 10% (approx range, -15% to 75%). 20.5% mean increase in myoelectric output for SMT group by paired t-test (<i>p</i> < 0.001); | | Yurkiw,
Mior ²⁸ | 14 | Between the ages of 18 and 55; mean age = 37.4 yrs; 11 females, 3 males | Comparison of MAD
(Activator) and SMT
(diversified) | No statistical differences between MAD and SMT treatments | |--|----|---|---|--| | Gemmell,
Jacobson ³¹ | 30 | 18–65 years | Activator or Meric
Thrust | The results indicate that there is no significant difference between Meric and Activator adustments in reducing acute low back pain ($F = .005$, $df = 2.27$, $p = .941$) | | Yates,
Lamping,
Abram,
Wright ⁵⁴ | 21 | Mean Age 45.14
(Active); 51.71
(Placebo); 51.43
(Control); F
(2,18) = 1.476,
p < 0.255 | Active Group-
Activator
Placebo group-Sham
Control- No Treatment | Pertaining to efficacy, this study reported statistically significant decreases in blood pressure among those patients receiving chiropractic adjustment to the upper thoracic spine with an activator adjusting instrument as compared to those receiving a sham treatment with the same device set to the "off" position, and a control group receiving no treatment. | | Symons,
Herzog,
Leonard,
Nguyen ¹³ | 9 | 21–40 years | Activator thrust delivered to 12 spinal locations | Cervical thrusts elicited positive responses 50% of the time; Throacic SMT thrusts elicited positive responses 72% of the time at T2–T3, 83% of the time at T6–T8, and 22% of the time at T11–T12; Lumbar SMT thrusts delivered to L2–L4 elicited positive responses 83% of the time; and Sacroiliac SMT thrusts delivered to the PSIS elicited positive responses 94% of the time. The average positive response rate for the entire spine was 68%. | | Hawk, Azad,
Phongphua,
Long ¹⁷ | 18 | 12 male (21–48
yo, mean 30) &
6 female (24–46
yo, mean 37) | Flexion-distraction
table (active) and
Activator (sham) | Main result: improvement in VAS (pain) & GWBS (wellness) scale post sham adjustment (non-significant) | | Herzog,
Kawchuk,
Conway ⁴³ | 83 | Na | Spinal manipulative
therapy – manual and
mechanical (Activator) | There was no significant correlation between preload and Change if F forces for tx's using Activator Instrument, whereas in 4/5 manual techniques a significant correlation between preload and change if F forces was found. Preload forces were defined as the mean force exerted over a period of 1–2s before the treatment thrust. Peak forces were defined as the largest force measured during SMT. Change if F was calculated as the change in force from preload to peak force. | |---|-----------|---|---|---| | Polkinghorn,
Colloca ² | 1 | 35 | AAI | 35 y/o female, 5 year history post failed surgery X2, resolved with AII | | Polkinghorn,
Colloca ¹⁵ | F 29 YOA, | Na | Activator treatment 9x /4 weeks, exercise | Improvement in leg length Vas decreased | | Polkinghorn,
Colloca ²¹ | 1 | M 26 YOA, | Activator treatment 8 weeks | Improvement in leg length | | Cooperstein ²⁶ | | | Activator Adjusting Instrument | With regard to efficacy, this study offers a review of various studies that are part of the MAD committee's review process which need not be discussed here. | | Polkinghorn ³⁰ | 1 | 53 year-old female | Activator treatment protocol full-spine | A single case report plus good review (on frozen shoulder) treated by Activator protocol over 6 months. Outcome measures are not very clearly stated. | | Polkinghorn ³² | 1 | 50 y/o female with metastatic Ca to shoulder and frozen shoulder. | AAI | 50% inc ROM, and reduce pain in 3 days. Discharged in 7 days. | | Polkinghorn ³³ | 3 | F 59 YOA, F 55
YOA, F 71 YOA | Activator treatment; 15 tx/8 wks; 8 tx/4 wks, 10 tx/4wks. | Less symptoms | | Polkinghorn ³⁷ | 1 | 54 yrs. | Activator Adjustment and Homeopathic treatment of the knee | This study provides class 3 evidence of successful management of a patient with knee pain and a medical meniscus tear through chiropractic care using the Activator Adjusting Instrument as the only form of chiropractic treatment together with the application of a homeopathic ointment. Because the use of homeopathic ointment provides a cofounding variable, no definitive conclusions can be made regarding the treatment effect of the Activator Adjusting Instrument in this case. | |---|----|---------------------------|---|---| | Osterbauer, De
Boer,
Widmaier,
Petermann,
Fuhr ³⁹ | 10 | NA | Activator protocol at 3 visits/week for 5 weeks | Significant decreases in VAS pain score and Oswestry score, decreased number of positive provocation tests | | Osterbauer,
Derickson,
Peles, DeBoer,
Fuhr,
Winters ⁴⁴ | 10 | 19–75 Years | (SMT) delivered by means of an Activator Adjusting Instrument to the cervical spine; Four of ten subjects who had severe acute pain also received interferential electrotherapy; 6 of the patients reported taking pain medication (OTC or prescribed) which was not monitored in a consistent manner | Mean pain scores decreased from 44.1 to 10.5 ($t = 4.93$: $p < .0001$) and mean total range of motion increased from 234 to 297 degrees ($t = 5.6$; $p < .0001$). At 1 year, 7 respondents noted stability of their symptoms at or near the level reported immediately after the 6-wk treatment regime | | Frach,
Osterbauer,
Fuhr ⁴⁶ | 2 | M – 37 YOA,
F – 18 YOA | Activator adjusting,
high-voltage
electrotherapy | Improvement of symptoms | | Phillips ⁴⁷ | 1 | | Application of activator method | Noticeable reduction of exudate and pain symptoms was evident three days later. Continued care resulted in both ears being clear of exudate. Acute otitis media reappeared five and six months later. Adjustment of the C1 resulting in clearing of symptoms. | |---|---|--|---|---| | Richards,
Thompson,
Osterbauer,
Fuhr ⁴⁹ | 2 | Case One:
54-yr-old male
Case Two:
36-yr-old female | Case One:pelvic
blocking, high force
galvanic, passive
weight assisted
stretching, adjustments
with the Activator
Case Two: same as
above. | Case One: Resoltion of 4 mm disc bugle at L4 with care. Case Two: No change to 4 mm L3 disc herniation, but a 3 mm change at the L4 disc level, with shifting away from the nerve root. | ## **APPENDIX B** ## **EVIDENCE TABLE ON USE AND USAGE** | Use and Usage | | | | | |---|--|-----------------------------|-------|-----------------------| | Author | Reference | Study Design | Class | Clinical/Experimental | | Wood, Colloca,
Mathews ⁶ | JMPT 2001; 24(4):260–271. Prospective, randomized comparative cliratial, RCT | | 1 | Clinical | | Keller, Colloca ⁸ | JMPT 2000; 23(9):585–595. | Cohort Study | 1 | Clinical | | Yates, Lamping,
Abram Wright ⁵⁴ | JMPT 1988; 11(6):484–488. | RCT | 1 | Clinical | | Colloca, Keller ³ | JMPT 2001; 24(8):489–500. | Cohort study | 2 | Experimental. | | Colloca, Keller ⁵ | Spine 2001; 26(10):1117–1124. | Experimental | 2 | Experimental | | Gleberzon ¹⁴ | JCCA 2000; 44(3):157–168. | Experimental | 2 | Experimental | | Keller, Colloca,
Fuhr ¹⁶ | JMPT 1999; 22(2):75–86. | Experimental | 2 | Experimental | | Hawk, Azad,
Phongphua, Long ¹⁷ | JMPT 1999; 22(7):436–443. | Cohort | 2 | Clinical | | Nathan, Keller ³⁵ | JMPT 1994; 17:431–441. | Experimental | 2 | Experimental | | Kawchuk, Herzog ⁴² | JMPT 1993; 16:573–577. | Experimental | 2 | Experimental | | Herzog, Kawchuk,
Conway. ⁴³ | JNMS 1993; 1(2):52–58. | Experimental | 2 | Experimental | | Osterbauer, Derickson, Peles, DeBoer, Fuhr, Winters ⁴⁴ | JMPT 1992; 15(8):501–511. | Descriptive Case
Series | 2 | Clinical | | Polkinghorn,
Colloca ² | JMPT 2001; 24(9):589–595. | Case study | 3 | Clinical | | Gleberzon ⁷ | JCCA 2001; 45(2):86–99. | Review of the
Literature | 3 | NA | | Hawk, Long,
Boulanger,
Morschhauser, Fuhr ¹¹ | J Am Geriatric Soc 2000;
48:534–545. | Case series | 3 | Clinical | | Polkinghorn,
Colloca ¹⁵ | JMPT 1999; 22(6):411–416. | Case report | 3 | Clinical | | Schneider, Cox,
Polkinghorn, Blum,
Getzoff,
Troyanovich ¹⁹ | Chiropractic Technique 1999; 11(1):1–32. | Hypothetical Case
Study | 3 | NA | |--|--|-----------------------------|---|----------| | Nykoliation,
Mierau ²⁰ | JCCA 1999; 43(3):161–167. | Case study | 3 | Clinical | | Polkinghorn,
Colloca ²¹ | JMPT 1998; 21(3):187–196. | Case report | 3 | Clinical | | Polkinghorn ²² | JMPT 1998. 21(2):114-121. | Case study | 3 | Clinical | | Cooperstein ²⁶ | Chiropractic Technique 1997; 9(3):108–114. | Review of the
Literature | 3 | NA | | Polkinghorn ³⁰ | JMPT 1995; 18:105–115. | Single case report | 3 | Clinical | | Polkinghorn ³² | Chiropractic Technique 1995; 7:98–102. | Case study | 3 | Clinical | | Polkinghorn ³³ | Chiro Sports Med 1995; 9:44–51. | Case study | 3 | Clinical | | Osterbauer, Fuhr,
Keller ³⁴ | In Advances in Chiropractic (vol.2). 1995. 471–520. | Literature synthesis | 3 | NA | | Polkinghorn ³⁷ | JMPT 1994; 17(7):474–484. | Case Study | 3 | Clinical | | Osterbauer, De Boer,
Widmaier,
Petermann, Fuhr ³⁹ | JMPT 1993; 16:82–90. | Case series | 3 | Clinical | | Phillips ⁴⁷ | Chiropractic: The Journal of
Chiropractic Research and
Clinical Investigation 1992.
8(2):38–39. | Case study | 3 | Clinical | | Byfield ⁴⁸ | Eur J Chiro 1991; 39:45–52. | RCT commentary only | 3 | Clinical | | Richards, Thompson,
Osterbauer, Fuhr ⁴⁹ | Am J Chiro Med 1990; 3:25–32. | Case studies | 3 | Clinical | | Author | Number | Ages | Intervention | Results | |--|---|--|--|--| | Wood, Colloca,
Mathews ⁶ | 30 (11 men,
19 women) | 23–59 years
old | Manual versus mechanical adjusting techniques | Equal effectiveness between the manual and mechanical adjusting groups during the treatment period and at one month follow up. Cervical ROM showed statistically significant changes for both groups during the treatment phase, but the differences between groups was not statistically significant at the end of treatment or one month follow up | | Keller, Colloca ⁸ | 40 | Na | AII (max setting) vs
sham (AII min
setting) vs 20 min
rest | 70% of SMT increased myoelectric output by > 10% (approx range, -10% to 65%); 20% of sham increased yoelectric output by > 10% (approx range, -10% to 25%); 20% of control ncreased yoelectric output by > 10% (approx range, -15% to 75%). 20.5% mean increase in myoelectric output for SMT group by paired t-test (p < 0.001) | | Yates, Lamping,
Abram, Wright ⁵⁴ | 21 | Mean Age
45.14
(Active);
51.71
(Placebo);
51.43
(Control); F
(2,18) = 1.476,
p < 0.255 | Active Group
Activator
Placebo group Sham
Control No
Treatment | With regard to usage, this study reports the use of the Activator Adjusting Instrument in the treatment of upper thoracic subluxations in a population of patients with hypertension | | Colloca, Keller ³ | 22 | M F 15–73
years of age | Activator | Activator was used as an experimental tool to impart a force to the spine, the reaction of the spine and surrounding structures was measured. | | Colloca, Keller ⁵ | 20 (10 male) | age > 55 yo;
new patient or
no visits prior
6 months | Activator impulse to T8–SI joint | Main result: local reflex response noted in 21–25% of impulses delivered, in 19 (95%) patients | | Gleberzon ¹⁴ | 150
students
randomly
assigned to
16 groups | Na | Literature review and report | Recommended techniques to be added to the curriculum in rank order are Thompson (100%), Gonstead (97%), Activator (94%) | | Keller, Colloca,
Fuhr ¹⁶ | Na | Na | Comparison of Activator Adjusting Instrument and electronic PCB impact hammer as applied to a steel beam | The authors found that the AAI instrument produced a highly reproducible peak impulse forces. The resonant frequency was predicted by the AAI and the PCB hammer. But the AAI produced variations in the magnitude of the driving point impedance at the resonant frequency were high. This problem was offset with the addition of a pre-load control frame. | |---|--------------------------|---|--|---| | Hawk, Azad,
Phongphua,
Long ¹⁷ | 18 | 12 male (21–
48 yo, mean
30) & 6 female
(24–46 yo,
mean 37) | Flexion-distraction
table (active) and
Activator (sham) | Main result: improvement in VAS (pain) & GWBS (wellness) scale post sham adjustment (non-significant) | | Nathan, Keller ³⁵ | 3 | NA | Activator impulse to spinous process of T11–L3 | Displacement of IMD in axial rotation, flex-extension rotation, PA shear were observed while recording force-time history. Derivative values calculated such as stiffness | | Kawchuk,
Herzog ⁴² | 5 (1 for each technique) | | Cervical SMT | Preload force = 22N (average), peak
force = 41N (low), duration = 32 msec
(fast) | | Herzog,
Kawchuk,
Conway ⁴³ | 83 | Na | Spinal manipulative
therapy – manual and
mechanical
(Activator) | There was no significant correlation between preload and Change if F forces for tx's using Activator Instrument, whereas in 4/5 manual techniques a significant correlation between preload and change if F forces was found. Preload forces were defined as the mean force exerted over a period of 1–2s before the treatment thrust. Peak forces were defined as the largest force measured during SMT. Change if F was calculated as the change in force from preload to peak force. | | Osterbauer,
Derickson, Peles,
DeBoer, Fuhr,
Winters ⁴⁴ | 10 | 19–75 years | SMT) delivered by means of an Activator Adjusting Instrument to the cervical spine; Four of ten subjects who had severe acute pain also received interferential electrotherapy; 6 of the patients reported taking pain medication (OTC or prescribed) which was not monitored in a consistent manner | Mean pain scores decreased from 44.1 to 10.5 (t = 4.93: $p < .0001$) and mean total range of motion increased from 234 to 297 degrees (t = 5.6; $p < .0001$). At 1 year, 7 respondents noted stability of their symptoms at or near the level reported immediately after the 6-wk treatment regime | |--|---------------------------------|--------------------------|--|--| | Polkinghorn,
Colloca ² | 1 | 35 | AAI | 35 y/o female, 5 year history post failed surgery X2, resolved with AII | | Gleberzon ⁷ | Na | Na | Literature Search | 21 studies related to Activator technique found (3 technique descriptions, 6 case studies, 2 case series, 8 experimental studies, and 2 clinical trials) | | Hawk, Long,
Boulanger,
Morschhauser,
Fuhr ¹¹ | 805 patients
from 44
DC's | 55 and older | Multiple chiropractic techniques | The only relevant point is that an unknown proportion of DC's in the US & 2 unspecified provinces use Activator in geriatric patients. | | Polkinghorn,
Colloca ¹⁵ | F 29 YOA, | Na | Activator treatment 9x /4 weeks, exercise | Improvement in leg length VAS decreased | | Schneider, Cox,
Polkinghorn,
Blum, Getzoff,
Troyanovich ¹⁹ | 1 | 36 years | Activator Methods
Chiropractic
Technique (Relevant)
and several other
chiropractic
techniques | Proponent of the Activator Method, discussed treatment protocols (visit frequency and duration) of AMCT being consistent with those recommended by the Mercy Conference Practice Guidelines. | | Nykoliation,
Mierau ²⁰ | 3 | Female, age range 32–48. | MAD | No confounding issues are presented, explored or discussed. | | Polkinghorn,
Colloca ²¹ | 1 | M 26 YOA, | Activator treatment 8 weeks | Improvement in leg length | | Polkinghorn ²² | 1 | | Application Activator
Adjusting Instrument | Patient showed complete resolution of symptoms after 3.5 months. | | Cooperstein ²⁶ | | | Activator Adjusting Instrument | Instruments were developed in chiropractic to "invest the thrust with a greater degree of controllable and repeatable speed, depth and direction (p.109)." "The Activator Adjusting Instrument (AAI) is the most widely used thrusting device among chiropractors and has been in use for approximately 20 years. The percussive device was awarded a patent and is recognized under the Food and Drug Administration Medical Devices Act. It has also been qualified as a method of manual manipulation, which permits practitioners to be reimbursed under the Medicare program | |---|---|---|---|---| | Polkinghorn ³⁰ | 1 | 53 year-old female | Activator treatment protocol full-spine | A single case report plus good review (on frozen shoulder) treated by Activator protocol over 6 months. Outcome measures are not very clearly stated. | | Polkinghorn ³² | 1 | 50 y/o female with metastatic Ca to shoulder and frozen shoulder. | AAI | 50% inc ROM, and reduce pain in 3 days. Discharged in 7 days. | | Polkinghorn ³³ | 3 | F 59 YOA, F
55 YOA, F 71
YOA | Activator treatment;
15 tx/8 wks; 8 tx/4
wks, 10 tx/4wks. | Less symptoms | | Osterbauer, Fuhr,
Keller ³⁴ | | | | At the outset, the authors indicate that" AMCT procedures of subluxation detection and chiropractic adjusting have not been scientifically validated" (p.475) and "that there is no estimate for overall efficacy and effectiveness of these procedures are available at this time" (p.475) | | Polkinghorn ³⁷ | 1 | 54 yrs. | Activator Adjustment
and Homeopathic
treatment of the knee | This study reports the usage of the Activator Adjusting Instrument in the treatment of knee pain and associated medial meniscus tear. | |---|----|--|---|---| | Osterbauer, De
Boer, Widmaier,
Petermann,
Fuhr ³⁹ | 10 | NA | Activator protocol at 3 visits/week for 5 weeks | Significant decreases in VAS pain score and Oswestry score, decreased number of positive provocation tests | | Phillips ⁴⁷ | 1 | | Application of activator method | Noticeable reduction of exudate and pain symptoms was evident three days later. Continued care resulted in both ears being clear of exudate. Acute otitis media reappeared five and six months later. Adjustment of the C1 resulting in clearing of symptoms. | | Byfield ⁴⁸ | | | | Dr. Byfield states the Activator is an alternative to manual cervical SMT and that it produces "consistent, controlled force", and cites several older references on the technical specifications of the device | | Richards,
Thompson,
Osterbauer,
Fuhr ⁴⁹ | 2 | Case One: 54-
yr-old male
Case Two: 36-
yr-old female | Case One:pelvic
blocking, high force
galvanic, passive
weight assisted
stretching,
adjustments with the
Activator Case Two:
same as above. | Case One: Resoltion of 4 mm disc bugle at L4 with care. Case Two: No change to 4 mm L3 disc herniation, but a 3 mm change at the L4 disc level, with shifting away from the nerve root. | ## **APPENIDX C** ## **EVIDENCE TABLE ON SAFETY** | Safety | | | | | |--|--|---|-------|-----------------------| | Author | Reference | Study Design | Class | Clinical/Experimental | | Wood, Colloca,
Mathews ⁶ | JMPT 2001; 24:260–271. | Prospective,
randomized
comparative clin trial
RCT | 1 | Clinical | | Keller, Colloca ⁸ | JMPT 2000; 23(9):585–595. | Cohort Study, (unclear if the patients were randomized to groups) | 1 | Clinical | | Gemmell, Jacobson ²³ | Chiro Technique 1998; 10: 8–10. | RCT | 1 | Clinical | | Yates, Lamping,
Abram, Wright ⁵⁴ | JMPT 1988; 11(6):484–488. | RCT | 1 | Clinical | | Solinger ¹² | Clinical Biomechanics 2000; 15(2):87–94. | Experimental | 2 | Experimental | | Fuhr, Green, Colloca,
Keller ²⁵ | Activator Methods
Chiropractic Technique 1997;
443–450. | Experimental | 2 | Experimental | | Kawchuk, Herzog ⁴² | JMPT 1993; 16:573–577. | Experimental | 2 | Experimental | | Triano ¹ | In: Tolison CD, et al, eds. Practical Pain Management, 3rd Edition. Lippincott Williams and Wilkins 2002, pp. 109–119. | Book Chapter –
Review of the
Literature | 3 | Na | | Polkinghorn,
Colloca ² | JMPT 2001; 24(9):589–595. | Case study | 3 | Clinical | | Triano ⁴ | The Spine Journal 2001; 1(2):121–130. | Literature synthesis | 3 | Na | | Nykoliation,
Mierau ²⁰ | JCCA 1999; 43(3):161–167. | Case study | 3 | Clinical | | Polkinghorn,
Colloca ²¹ | JMPT 1998; 2(1):187–196. | Case report | 3 | Clinical | | Cooperstein ²⁶ | Chiropractic Technique 1997; 9(3):108–114. | NA | 3 | Na | | Polkinghorn ³² | Chiropractic Technique 1995; 7:98–102. | Case study | 3 | Clinical | |---|---|--------------|---|----------| | Phillips ⁴⁷ | Chiropractic: The Journal of
Chiropractic Research and
Clinical Investigation, 1992;
8(2):38–39. | Case study | 3 | Clinical | | Richards, Thompson,
Osterbauer, Fuhr ⁴⁹ | Am J Chiro Med 1990;
3:25–32. | Case studies | 3 | Clinical | | Author | Number | Ages | Intervention | Results | |--|---|---|---|---| | Wood, Colloca,
Mathews ⁶ | 30 (11 men,
19 women) | 23–59 years old | Manual versus
mechanical adjusting
techniques | In the absence of epidemiological data, case report or case series reporting no adverse reaction are as valid as those that report adverse reaction. | | Keller, Colloca ⁸ | 40 | | AII (max setting) vs
sham (AII min
setting) vs 20 min
rest | Y; 70% of SMT increased myoelectric output by > 10% (approx range, -10% to 65%); 20% of sham increased myoelectric output by > 10% (approx range, -10% to 25%); 20% of control increased myoelectric output by > 10% (approx range, -15% to 75%). 20.5% mean increase in myoelectric output for SMT group by paired t-test $(p < 0.001)$ | | Gemmell,
Jacobson ²³ | 85
consecutive
established
LBP
patients | 18–75 years old | Activator treatment protocol full-spine | In the absence of epidemiological data, case report or case series reporting no adverse reaction are as valid as those that report adverse reaction. | | Yates, Lamping,
Abram, Wright ⁵⁴ | 21 | Mean Age
45.14 (Active);
51.71
(Placebo);
51.43 (Control);
p < 0.255 | Active Group-
Activator Placebo
group-Sham Control-
No Treatment | In the absence of epidemiological data, case report or case series reporting no adverse reaction are as valid as those that report adverse reaction. | | Solinger ¹² | NA | NA | | The article reports results of an analytical model of spinal manipulation that matches the displacment profiles from experimental data on AII. The model then computes biomechanical parameters (e.g. stiffnesses, resonant frequencies etc). The close fit of model and experimental displacements and associated calcuated properties that also match experimental data in the literature validates vertebral displacement data. Such displacements are consistent with small ranges (fractions of a degree or millimetre) primarily around the neutral zone of the motion segment. This data demonstrates that no end range or extreme displacements potentially harmful to the patient are feasible from the thrust phase induced by the AII MAD instrument. | |---|--------------------------------|--|--|--| | Fuhr, Green,
Colloca, Keller ²⁵ | 20 | YF (mean age
23.8), YM (
26.8),OF (56.4),
YF (57.7) | Quantification of
frequency response
functions (FFT) and
loads (force,
acceleration) | Loads well within biological tolerance. | | Kawchuk,
Herzog ⁴² | 5 (1 for
each
technique) | | Cervical SMT | In the absence of epidemiological data, case report or case series reporting no adverse reaction are as valid as those that report adverse reaction. | | Triano ¹ | Na | Na | Na | The chapter discusses the use of "impulse hammers" or mechanically assisted methodologies Within the context of other forms of spinal manipulative therapy. It is noted that mechanical adjusting instruments "hold the advantage of permitting the physician to effect the highest degree of control on applied force direction while eliminating applied moments." Additionally, it is stated that such mechanical adjusting instruments provide a very short duration load (<20 ms) at peak forces comparatively lower than manual type thrusts." | |--------------------------------------|----|----|-----|--| | Polkinghorn,
Colloca ² | 1 | 35 | AAI | In the absence of epidemiological data, case report or case series reporting no adverse reaction are as valid as those that report adverse reaction. | | Triano ⁴ | Na | Na | Na | Triano reports the spinal loads were the same for 66 HVLA procedures and various activities of daily living. Volunteers tolerated higher neck load levels associated sudden neck movements than with SMT. Triano notes that SMT is a procedure that requires some level of skill to be performed expertly, and that differences in skill level between the expert and novice have been documented. | | Nykoliation,
Mierau ²⁰ | 3 | Female, age range 32–48. | MAD | Patient 1 has no documentation of the diagnosis or "surgical" interventions. Poor quality clinical report. Patient 2 has no adverse reaction from treatment with AII. The "adverse" affect is of delayed appropriate therapy which is a management decision not a technique issue. Patient 3 reports injury by a provider who has little to no training in use of the MAD device. No pathoanatomical studies are presented to confirm claim of damage to vertebral artery circulation. | |---------------------------------------|----|--------------------------|-----------------------------|--| | Polkinghorn,
Colloca ²¹ | 1 | M 26 YOA, | Activator treatment 8 weeks | Single case study – MRI evidence of disc herniation not convincing. No recent MRI or post-tx MRI | | Cooperstein ²⁶ | Na | Na | Na | With regard to Safety, this study notes the following: "The percussive instrument is thought to lower the risk of iatrogenic postmanipulative injuries. "The Activator technique, because of its controlled force and displacement, is widely considered to be a safe, non-traumatic method of chiropractic care (p.111)." NOTE: This quote is from Slosberg in Today's Chiropractic which is a non-refereed journal and should be noted that it is an opinion statement as the writer's opinion supported only by another's opinion | | Polkinghorn ³² | 1 | 50 y/o female | AAI | Oncologist consulted and approved tx to shoulder as long as it did not involve "forceful" manipulation. Oncologist reviewed progress and returned patient for more of same. | | Phillips ⁴⁷ | 1 | | Application of activator method | In the absence of epidemiological data, case report or case series reporting no adverse reaction are as valid as those that report adverse reaction. | |---|---|---|---|--| | Richards,
Thompson,
Osterbauer,
Fuhr ⁴⁹ | 2 | Case One:
54-yr-old male
Case Two:
36-yr-old
female | pelvic blocking, high
force Galvanic,
passive weight
assisted stretching,
adjustments with
Activator | In the absence of epidemiological data, case report or case series reporting no adverse reaction are as valid as those that report adverse reaction. | ## **APPENDIX D** # EVIDENCE TABLE ON EDUCATIONAL REQUIREMENTS | Education | | | | | |--|--|-----------------------------|-------|-----------------------| | Author | Reference | Study Design | Class | Clinical/Experimental | | Colloca, Keller, Gunzberg,
Vandeputte, Fuhr ¹⁰ | JMPT 2000; 23(7):447–457. | Case study | 3 | Clinical | | Gleberzon ¹⁴ | JCCA 2000; 44(3)157–168. | Experimental | 3 | Experimental | | Polkinghorn ²² | JMPT 1998; 21(2):114–121. | Case study | 3 | Clinical | | Cooperstein ²⁶ | Chiropractic Technique 1997; 9(3):108–114. | Review of the
Literature | 3 | | | Osterbauer, Fuhr ⁵⁰ | Chiropractic Technique 1990; 2(4):168–175. | Survey | 3 | | | Author | Number | Ages | Intervention | Results | |--|--|------|--|---| | Colloca, Keller,
Gunzberg,
Vandeputte,
Fuhr ¹⁰ | 1 | Na | Application of
AA11 Activator
Methods | The authors argue that distractive and compressive loads have resulted in differing neurophysiologic sensitivity. If therapy is to be effective, the directional sensitivity of mechanosensitive afferent provides a rationale for the need for a mechanosensitive education and training of the practitioner who applies SMT | | Gleberzon ¹⁴ | 150 students
randomly
assigned to
16 groups | | Literature review and report | Recommended techniques to be added to the curriculum in rank order are Thompson (100%), Gonstead (97%), Activator (94%) | | Polkinghorn ²² | 1 | | Application
Activator Adjusting
Instrument | Patient showed complete resolution of symptoms after 3.5 months. | | Cooperstein ²⁶ | | | Activator Adjusting
Instrument | With regard to Educational standards, this study mentions, "AMCT is taught in several of the chiropractic colleges." | | Osterbauer,
Fuhr ⁵⁰ | Na | Na | Survey | Table 2 indicates that 8 Chiropractic Colleges offer AMCT as either an elective course or in postgraduate training. |